Cho hình chóp sabcd có đáy abcd là hình thoi cạnh a

-
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânTiếng anh thí điểmĐạo đứcTự nhiên và xã hộiKhoa họcLịch sử và Địa lýTiếng việtKhoa học tự nhiênHoạt động trải nghiệm, hướng nghiệpHoạt động trải nghiệm sáng tạoÂm nhạcMỹ thuật
*

Cho hình chóp S.ABCD đáy là hình thoi cạnh a, đường chéo AC=a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa (SCD) và đáy bằng \(45^0\)

Tính thể tích khối chóp đã cho.

Bạn đang xem: Cho hình chóp sabcd có đáy abcd là hình thoi cạnh a


*

\(AC=a\Rightarrow ABC\) đều

Gọi H là hình chiếu vuông góc của S lên đáy \(\Rightarrow H\) là trung điểm AB

\(\Rightarrow CH\perp AB\Rightarrow CH\perp CD\)

Mà \(SH\perp CD\) (do \(SH\perp\left(ABCD\right)\Rightarrow CD\perp\left(SCH\right)\)

\(\Rightarrow\widehat{SCH}\) là góc giữa (SCD) và (ABCD) \(\Rightarrow\widehat{SCH}=45^0\)

\(\Rightarrow\Delta SCH\) vuông cân tại H \(\Rightarrow SH=CH=\frac{a\sqrt{3}}{2}\)

\(BD=2.\frac{a\sqrt{3}}{2}=a\sqrt{3}\)

\(\Rightarrow V=\frac{1}{6}SH.AC.BD=\frac{a^3}{4}\)


*

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng a. SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, cạnh AC = a. Tính\(\alpha\)theo thể tích khối S.ABCD và khoảng cách từ A đến mặt phẳng (SBC)


*

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt SAB là tam giác đều và nằm trong mặt phẳng vuông hóc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD và tính khoảng cách từ A đến mặt phẳng (SCD) theo a


ABCD+có+đáy+ABCD+là+hình+vuông+cạnh+a,+mặt+phẳng+(SAB)+vuông+góc+với+mặt+phẳng+đáy,+SA=SB,+góc+giữa+đường+thẳng+SC+và+mặt+phẳng+đáy+bằng+45+độ.+Tính+thể+tích+khối+chóp+S.SBCD+theo+a.">

Cho hình chóp S>ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy, SA=SB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 độ. Tính thể tích khối chóp S.SBCD theo a.

Xem thêm: Top 15 Nhân Vật Được Yêu Thích Nhất Trong Harry Potter Tên Thật Là Gì


*
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a, góc BAD=120. Mặt bên (SAB) có SA=a, SB= a\(\sqrt{3}\) và vuông góc với mặt phẳng đáy. Gọi G là trọng tâm tam giác SCD. Tính thể tích hình chóp SABCD và khoảng cách từ G đến mặt phẳng (SAB).

Giúpmình với


cho hình chóp sabcd có đáy là hình vuông cạnh a, SA vuông góc với đáy, góc giữa SC và (SAB) bằng 45. Gọi G là trọng tâm tam giác SAB. tính thể tích khối chóp GABCD


Cho hình chóp S.ABCcó đáy ABC là tam giác đều, cạnh 4a. Tam giác SAB nằm trong mặt phẳng vuông góc với đáy, biết rằng hình chiếu của S lên mặt phẳng đáy là điểm H nằm trên cạnh AB và AH =a. Góc hợp bởi SC với mặt phẳng đáy là 60 độ. Tính thể tích khối chóp S.ABC


Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt phẳng bên ABC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SA, BC


Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC=60°. Cạnh bên SA vuông góc với mặt đáy và cạnh bên SC tạo với mặt đáy một góc 60°. Gọi I là trung điểm BC, H là hình chiếu vuông góc của A lên SI. Tính thể tích khối chóp S.ABCD và khoảng cách từ điểm H đến (SCD) theo a.


cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tm iacs ABC đều, hình chiếu vuông góc cúa đỉnh S trên mặt phẳng ABCD trùng với trọng tâm tam giác ABc. Góc giữa đường thẳng SD với mp ABCD bằng 30. Tính khoảng cách từ B đến mặt phẳng (SCD) theo a


Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AC = 2a, góc ACB = 30 độ. Hình chiếu vuông góc H của đỉnh S trên mặt đáy là trung điểm của cạnh AC và SH =\(\sqrt{2}a\). Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)